

Northern Beaches Secondary College Manly Campus

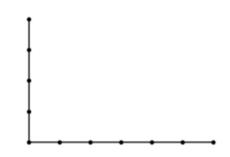
2023

Higher School Certificate Trial Examination

Mathematics Extension 1

General	 Reading time – 5 minutes
Instructions	 Working time – 2 hours
	 Write using black pen
	 NESA approved calculators may be used
	 A reference sheet is provided with this paper
	 For questions in Section II, show relevant mathematical reasoning and/or calculations
Total Marks:	_ Section I – 10 marks (pages 2–6)
70	Attempt Questions 1-10
	 Allow about 15 minutes for this section
	 Answer on Multiple Choice Answer Sheet provided
	Section II – 60 marks (pages 7–14)
	 Attempt Questions 11–14
	 Allow about 1 hour and 45 minutes minutes for this section
	 Answer each question in a separate booklet

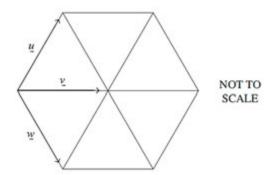
Section I


10 marks

Attempt Questions 1 – 10

Allow about 15 mins for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.


- 1. What is the domain and range of $y = 4 \cos^{-1}\left(\frac{3x}{2}\right)$.
 - A. Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$ Range: $-4\pi \le y \le 4\pi$
 - B. Domain: $-\frac{3}{2} \le x \le \frac{3}{2}$ Range: $-4\pi \le y \le 4\pi$
 - C. Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$ Range: $0 \le y \le 4\pi$
 - D. Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$ Range: $0 \le y \le 4$
- 2. The diagram shows eleven points lying on two straight line intervals.

How many quadrilaterals can be formed using the points as vertices?

A. 90 B. 210 C. 290 D. 330

3. Six equilateral triangles form a hexagon with side lengths of 4 cm. The vectors u, y and w are shown in the diagram.

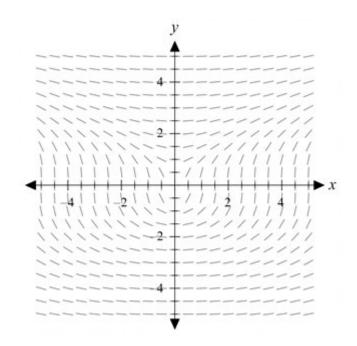
Which of the following is the value of $\underline{u} \cdot (\underline{u} + \underline{v} + \underline{w})$?

- A. 8
- B. 16
- C. 32
- D. 48

Let random variable X be the number of successes in n Bernoulli trials with probability of success p, and let q = 1 − p.
Define P(X=r) as the probability of r successes in n trials, where 0 ≤ r ≤ n. Which of the following is NOT always true?

A.
$$P(X = r) = {}^n \mathbb{C}_r p^r q^{n-r}$$

B.
$$P(1 < X < 3) = {}^{n}C_{2} p^{2} (1-p)^{n-2}$$
, given $n \ge 3$


C.
$$P(X \ge 1) = 1 - (1 - p)^n$$

D.
$$P(X = r) = {}^{n}\mathbf{C}_{r} p^{r} (1-p)^{n-r} = {}^{n}\mathbf{C}_{n-r} p^{n-r} (1-p)^{r}$$


- 5. Which expression is the result of the integral $\int \frac{3}{9+x^2} dx$?
 - A. $\tan^{-1}\frac{x}{3} + c$
 - B. $\frac{1}{3} \tan^{-1} \frac{x}{3} + c$
 - C. $3 \tan^{-1} \frac{x}{3} + c$

D.
$$\frac{1}{3} \tan^{-1} \frac{x}{9} + c$$

6. The graph of the direction field of a differential is shown below.

Which of the following best represents the particular solution which passes through the point (4, 0)?

- 7. What is the term independent of x in the expansion of $\left(x^3 + \frac{2}{x}\right)^{20}$?
 - A. ${}^{20}C_{10} 2^{10}$
 - B. ${}^{20}C_4 2^{16}$
 - C. ${}^{20}C_5 2^{25}$
 - D. ${}^{20}C_5 2^{15}$
- 8. Two teams of 3 players each and an umpire are to be formed from seven people. If two of the people cannot be on the same team, which of the following is the number of ways the teams can be formed?
 - A. 100
 - B. 50
 - C. 140
 - D. 70
- 9. What does the integral $\int_{0}^{\frac{\pi}{7}} \sin 3x \sin 4x \, dx$ simplify to?
 - A. $2\sin\frac{\pi}{7}$
 - B. $2\sin\frac{\pi}{7} \frac{1}{7}$
 - C. $\frac{1}{2}\sin\frac{\pi}{7}$
 - $D. \quad \frac{1}{2}\sin\frac{\pi}{7} \frac{1}{7}$

10. Which of the following functions is NOT a solution to the differential equation?

y'' + 3y' - 4y = 0?

- A. $y = e^{-4x}$
- B. $y = e^x$
- C. $y = e^{5x}$
- D. y = 0

Section II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Use a SEPARATE writing booklet.

a) Find the exact value
$$\cos^{-1}\left(\sin\frac{4\pi}{3}\right)$$
.

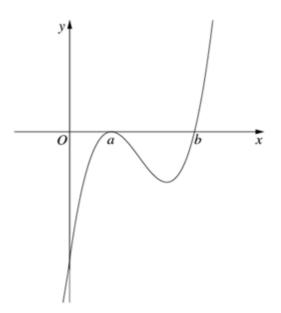
b) A Mathematics department consists of 12 teachers. Nine of the teachers wear glasses and three of the teachers do not wear glasses. Five of these teachers go out for dinner together.

What is the probability there will be more teachers who wear glasses than teachers who do not wear glasses in the group who go out for dinner?

- c) If the polynomials $P(x) = 2x^3 + mx^2 + x 3$ and $Q(x) = x^2 + 6x 5$ have the same remainder when divided by x + 1, find the value of m.
- d) The area under the curve $y = \log_e(x 2)$ which is bounded by the x axis and the line x = 7 is rotated about the x-axis.

Use the trapezoidal rule with three function values to find the approximate volume of the solid of revolution formed. Express your answer to 2 significant figures.

- e) (i) Write down the expansion of $(1 x)^5$. 1
 - (ii) Hence, or otherwise find the term of x^2 in $(2x-3)^2 (1-x)^5$. 2


Question 11 continues on the next page

1

2

2

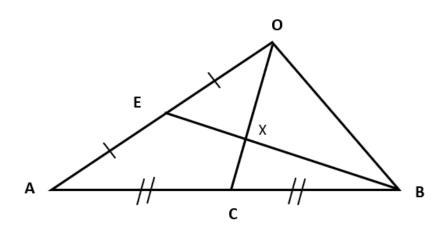
f) The graph of the function y = f(x) is shown

Draw a separate one-third of a page in your answer booklet the diagram for the graph of $y^2 = f(x)$.

g) A random variable X defines a binomial distribution where E(X) = 15 and Var(X) = 3.75. Find the values of *n* and *p*. 2

a) Differentiate
$$y = 4 \tan^{-1} \frac{x}{2}$$
 1

b) Quality control for the manufacturing of bolts is carried out by taking a random selection of 15 bolts from a batch of 10 000. Empirical data has determined that 10% of bolts are defective. If three or more bolts in the sample are found to be defective, that batch is rejected.

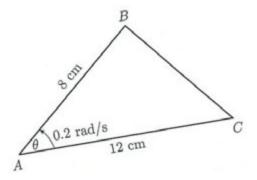

Find the expected value of the batch of 10 000.

d) Prove
$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$$
.

e) Calculate the exact area bounded by the curve $y = e^x$, the y-axis and the line $y = e^2$. 2

Question 12 continues on the next page

f) The diagram shows triangle *AOB*, where $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b_{\sim}$. OC and OE are medians which intersect at *X* as shown. E bisects \overrightarrow{OA} while C bisects \overrightarrow{AB} .


- (i) Find \overrightarrow{OC} in terms of \underline{a} and \underline{b} .
- (ii) If \overrightarrow{OC} is perpendicular to \overrightarrow{AB} , prove that triangle *AOB* is isosceles.

2

1

End of Question 12

- a) Solve the differential equation $\frac{dy}{dx} = x x\sin^2 y$, given that the graph of the solution passes through the point (1, 0)
- b) In triangle *ABC*, $\angle BAC$ is increasing at a constant rate of 0.2 radians/s. Find the rate of change in the area $\triangle ABC$ when $\theta = \frac{\pi}{3}$.

c) Use sums to products of trigonometric ratios to solve the equation.

 $\cos x + \cos 2x + \cos 3x = 0$ where $0 \le x \le 2\pi$

You may use the information on page 15 to answer Question 13 d)

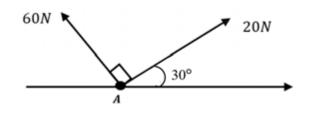
d) When all votes were counted at an election, it was found that 52% of voters chose Candidate A.

As votes were still being counted, a news agency conducted exit polling wherein they asked 1000 randomly selected voters as they were leaving the voting centre which candidate they voted for.

Assume all voters were equally likely to be selected to participate and all answered truthfully.

- (i) What was the probability that the news agency's sample proportion who voted for Candidate A would be less than 0.5?
- (ii) Suppose the proportion of the voters who chose Candidate A is now 40%.What is the smallest sample size such that the standard deviation is less than 0.01?2

Question 13 continues on the next page


11

3

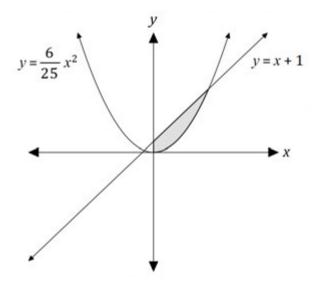
2

2

e) Forces of 60N and 20N act on an object, considered point A, as shown in the diagram.

- (i) Find the sum of the resolved parts of the forces in the horizontal direction.
- (ii) The vector sum of these forces acting on the object at point A is called the resultant force. Find the resultant force vector in the form $x \mathbf{i} + y \mathbf{j}$.

End of Question 13


1

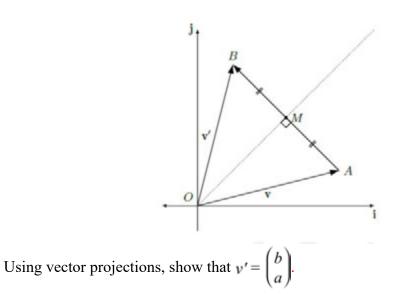
a) A frozen dinner has a temperature of 0° C and is placed in an oven with an ambient temperature of 180° C. The rate at which the dinner warms per minute is proportional to the difference between the dinner's temperature, *T*, and the ambient temperature. That is, $\frac{dT}{dt} = k(T - 180)$ where *k* is a constant.

It is given that the temperature of the dinner at time t is given by a function of the form $T = B + Ae^{kt}$ where A and B are constants.

If the dinner's temperature is 25° C after 15 minutes, find the constants *A*, *B*, and *k*, showing mathematical reasoning for each, and find the rate of change of the dinner's temperature when it is 100° C.

b) The graphs of y = x + 1 and $y = \frac{6}{25}x^2$ are shown on the axes below and the area enclosed by the *y*-axis and the two functions is shaded.

Find the exact volume of the solid of revolution formed by rotating the shaded area about the *x*-axis.


3

4

c) Given
$$7 + 12x - 4x^2 = 16 - (2x - 3)^2$$
.
Find the value of $\int_0^2 \frac{1}{\sqrt{7 + 12x - 4x^2}} dx$. Leave your answer in exact form. 2

Question 14 continues on the next page

d) The diagram shows the vector $v = \begin{pmatrix} a \\ b \end{pmatrix}$. v' is its reflection about the dotted line, y = x. *M* bisects *AB* and lies on y = x.

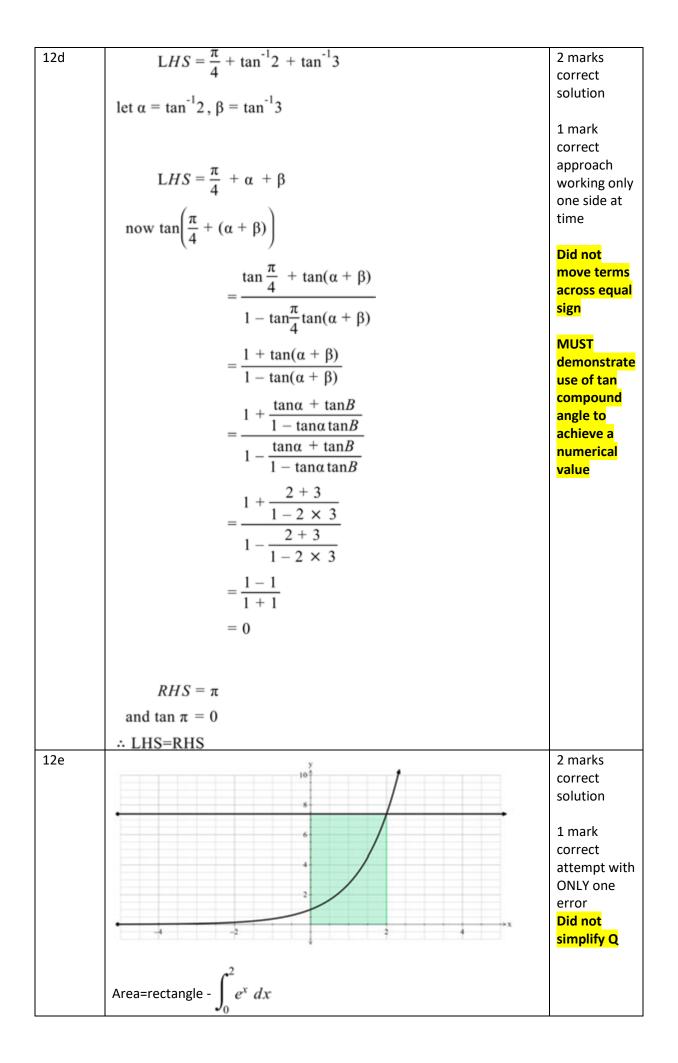
e) Use mathematical induction to prove that $\frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \dots + \frac{1}{(2n-1)(2n-1)(2n)} = \frac{1}{2n}$ for all integers $n \ge 1$.

3

3

End of paper

Question	Solution	Marking Guideline
1	$-1 \le \frac{3x}{2} \le 1$	C
	$-\frac{2}{3} \le x \le \frac{2}{3}$ domain	
	$0 \le \cos^{-1}\left(\frac{3x}{2}\right) \le \pi$	
	$0 \le 4\cos^{-1}\left(\frac{3x}{2}\right) \le 4\pi \text{ range}$ ${}^{4}\mathbf{C}_{2} \times {}^{6}\mathbf{C}_{2} = 90$	
2		A
3	corner point is not relevant $\mathbf{u} \cdot (\mathbf{u} + \mathbf{v} + \mathbf{w})$	В
	$= \mathbf{u} \mathbf{u} + \mathbf{v} + \mathbf{w} \cos 60^{\circ}$	
	$=4 \times 8 \times \frac{1}{2}$	
	= 16	-
4	Option D is only true when p = q = 0.5	D
5	$3 \times \frac{1}{3} \tan^{-1} \frac{x}{3} + C$	A
	$= \tan^{-1} \frac{x}{3} + C$	
6		В


7	General term	D
	${}^{20}\mathbf{C}_r (x^3)^{20-r} \left(\frac{2}{x}\right)^r$	
	$= {}^{20}\mathbf{C}_r \; x^{60-3r} \frac{2^r}{x^r}$	
	$= {}^{20}\mathbf{C}_r \; 2^r \; x^{60-4r}$	
	$\therefore 60 - 4r = 0$ $r = 15$	
	r = 15 = ${}^{20}\mathbf{C}_{15} \times 2^{15}$	
	$= {}^{20}\mathbf{C}_5 \times 2^{15}$	
8	Case 1: one of the two people is the umpire, then form the teams ${}^{6}C_{3} \times {}^{3}C_{3}$	В
	${}^{2}C_{1} \times \frac{{}^{6}C_{3} \times {}^{3}C_{3}}{2} = 20$ Have to divide by 2 as teams are indistinguishable.	
	Case 2: separate the two players into the two teams then sort the other players as a ref and teams.	
	${}^{5}\mathbf{C}_{1} \times {}^{4}\mathbf{C}_{2} \times {}^{2}\mathbf{C}_{2} = 30$	
	Total number = 20 + 30 = 50	
9	$=\frac{1}{2}\int_{0}^{\frac{\pi}{7}}(\cos x - \cos 7x) dx$	C
	$= \frac{1}{2} \left[\sin x - \frac{1}{7} \sin 7x \right]_{\frac{\pi}{7}}^{0}$	
	$=\frac{1}{2}\sin\frac{\pi}{7} - \frac{1}{14}\sin\pi - 0$	
	$=\frac{1}{2}\sin\frac{\pi}{7}$	
10	Testing each option, clearly C is the solution.	С
	$y = e^{5x}$ $y' = 5e^{5x}$	
	$y' = 5e^{5x}$ $y'' = 25e^{5x}$	
	$y'' = 25e^{5x}$ $25e^{5x} + 15e^{5x} - 4e^{5x} \neq 0$	
11a	Let $\theta = \cos^{-1}\left(\sin\frac{4\pi}{3}\right)$ $\cos\theta = \sin\frac{4\pi}{3}$	1 mark correct
	$=-\frac{\sqrt{3}}{2}$	solution
	$\theta = \pi - \frac{\pi}{6} \qquad (\cos \theta < 0)$ $= \frac{5\pi}{6}$	
	· · · · · · · · · · · · · · · · · · ·	

	On this page, just above it states "your solutions should include relevant mathematical reasoning and/or calculations". Students MUST show working.	
11b	Total number of ways to choose 5 teachers = ${}^{12}_{5}C = 792$ Number with more teachers with glasses = Number 5 glasses + Number 4 glasses + Number 3 glasses = $\binom{9}{5} + \binom{9}{4} \times \binom{3}{1} + \binom{9}{3} \times \binom{3}{2}$ = 756 Probability = $\frac{756}{792} = \frac{21}{22}$	2 marks correct solution. 1 mark total number or correct working for probability with one error.
11c	By Remainder Theorem, $Q(-1) = (-1)^2 + 6(-1) - 5$ = -10 $P(-1) = 2(-1)^3 + m(-1)^2 + (-1) - 3$ = -6 + m $\therefore -6 + m = -10$ $\therefore m = -4$ Students MUST show working.	2 marks correct solution 1 mark progress with ONLY one error (finds Q(-1) and attempts to equate to P(-1))
11d		3 marks correct solution 2 marks correct solution but not 2 s.f OR correct progress with ONLY one error 1 mark Correctly applies the trapezoidal rule or equivalent progress

	$Vol = \pi \int_3^7 \log_e (x-2)^2 dx$	
	3 function values give 2 sub-intervals	
	x 3 5 7 y^2 0 $(\log_e 3)^2$ $(\log_e 5)^2$	
	Trapezoidal Rule:	
	$Vol = \pi \left(\frac{7-3}{2x^2} \{ 0 + (\log_e 5)^2 + 2((\log_e 3)^2) \} \right)$	
	$Vol = \pi ((\log_e 5)^2 + 2((\log_e 3)^2))$	
	$Vol = 15.72 u^3$	
	$Vol = 16 u^3 to 2 sig. fig$	
11e i	$(1-x)^{5} = (1+(-x))^{5}$ = $\binom{5}{0}(-x)^{0} + \binom{5}{1}(-x)^{1} + \binom{5}{2}(-x)^{2} + \binom{5}{3}(-x)^{3} + \binom{5}{4}(-x)^{4} + \binom{5}{5}(-x)^{5}$ = $1 - 5x + 10x^{2} - 10x^{3} + 5x^{4} - x^{5}$	1 mark correct solution
11e ii	$(2x-3)^2 = 4x^2 - 12x + 9$ The term in $x^2 = 4x^2 \times 1 + (-12x) \times (-5x) + 9 \times 10x^2$ $= 154x^2$ Students MUST show working. 154 is the coefficient not the term.	2 marks correct solution 1 mark correct progress with ONLY one error

11f		2 marks correct graph 1 mark, only one side of square root plotted or equivalent merit.
11g	E(X) = np 15 = np Var(X) = np(1-p) 3.75 = 15(1-p) p = 1 - 0.25 = 0.75 $n = \frac{15}{0.75} = 20$	2 marks correct solution 1 mark correct progress with ONLY one error

	4 1	
12a	$y' = \frac{4}{1 + \left(\frac{x^2}{4}\right)} \times \frac{1}{2}$	1 mark
	$1 + \left(\frac{x^2}{x}\right) = \frac{2}{x}$	correct
	(4)	solution MUST BE
	8	FULLY
	$=\frac{6}{4+x^2}$	
12bi	4 T X	2 marks
	$P(X \ge 3) = 1 - (P(X = 0) + P(X = 1) + P(X + 2))$	correct
	$= 1 - \left(0.9^{15} + {}^{15}\mathbf{C}_1 \times 0.1 \times 0.9^{14} + {}^{15}\mathbf{C}_2 \times 0.1^2 \times 0.9^{13}\right)$	solution
	= 0.184	1 mark
	- 0.184	correct
		approach
		with ONLY
		one error in
		calculation
12bii	Expected Value = $0.816 \times 40 + 0.184 \times 5 - 20$	1 mark
	= \$13.56	correct
	- \$13.30	solution
		<mark>showing</mark>
		calculation
12ci	$\sin(2\theta + \theta) = \sin 2\theta \cos\theta + \cos 2\theta \sin \theta$	2 marks
	$= 2 \sin \theta (1 - \sin^2 \theta) + \sin \theta (1 - 2 \sin^2 \theta)$	correct
	$= 2 \sin \theta - 2 \sin^3 \theta + \sin \theta - 2 \sin^3 \theta$	solution
		1 mark
	$= 3 \sin \theta - 4 \sin^3 \theta$	correct
		progress
		working
		<mark>only one</mark>
		side at a
		<mark>time</mark> with
		ONLY one
12cii	C	error 2 marks
1201	$x = \sin^3 t \mathrm{dt}$	correct
	5	solution
	$=\frac{1}{4}\int (3\sin t - \sin 3t)dt$	
	$=\frac{1}{4}\int (3\sin t - \sin 3t)dt$	1 mark
	1 1	correct
	$= \frac{1}{4} \left[-3\cos t + \frac{1}{3}\cos 3t \right] + c$	progress
		with ONLY
		one error
	$\therefore 0 = \frac{1}{4} \left[-3\cos 0 + \frac{1}{3}\cos 0 \right] + c$	MUST show
		calculation
	$c = \frac{2}{3}$	<mark>of constant</mark>
	3	
	$\therefore x = -\frac{3}{4}\cos t + \frac{1}{12}\cos 3t + \frac{2}{3}$	
	4 12 3	

	-2	
	$= (2 \times e^2) - \int_0^z e^x dx$	
	$=2e^{2}-[e^{x}]^{0},2$	
	$= 2e^2 - (e^2 - e^0)$	
	$=2e^2-e^2+1$	
	$= e^2 + 1 \mu^2$	
12fi	$= e^2 + 1 u^2$ $OA + AB = OB$	1 mark
	AB = b - a	correct
	1	solution
	$CB = \frac{1}{2}(b-a)$	showing all working and
	P_{2}	FULLLY
	now $OC + CB = OB$	<mark>SIMPLI</mark> FIED
	$OC = b - \frac{1}{2}(b - a)$	
	$OC = b - \frac{1}{2}b + \frac{1}{2}a$	
	$=\frac{1}{2}a+\frac{1}{2}b$	
	$=\frac{1}{2}(a+b)$	
12fii	$\overrightarrow{OC} \cdot \overrightarrow{AB} = 0$	2 marks
	$\begin{pmatrix} 1 & 1 \end{pmatrix}$	correct
	$\left(\frac{1}{2\mathbf{a}} + \frac{1}{2\mathbf{b}}\right) \cdot (\mathbf{b} - \mathbf{a}) = 0$	solution
		1 mark
	$\frac{1}{2} \mathbf{a} \cdot \mathbf{b} - \frac{1}{2} \mathbf{a} \cdot \mathbf{a} + \frac{1}{2} \mathbf{b} \cdot \mathbf{b} - \frac{1}{2} \mathbf{a} \cdot \mathbf{b} = 0$	correct
		progress using given
	$\frac{1}{2} \mathbf{b} ^2 - \frac{1}{2} \mathbf{a} ^2 = 0$	info to show
		equal sides
	$ \mathbf{b} ^2 = \mathbf{a} ^2$	with ONLY
	$ \mathbf{b} = \mathbf{a} $	one error
	\therefore sides lengths \overrightarrow{OB} and \overrightarrow{OA} are equal	MUST
	$\therefore \Delta AOB$ is isosceles	SHOW ALL WORKING

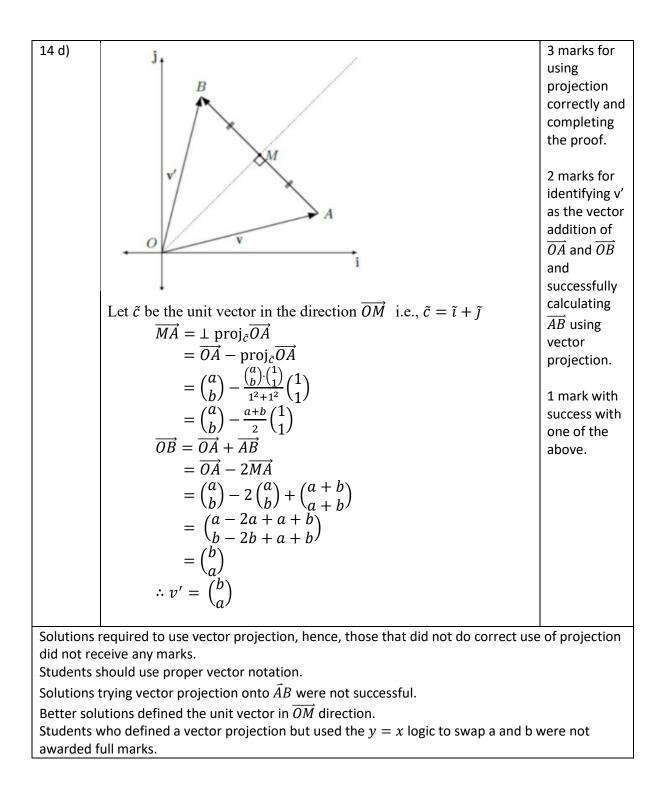
13a	$\frac{dy}{dx} = x(1 - \sin^2 y)$	2 marks for
	$dx = x\cos^2 y$	correct working and
		solution.
	$\frac{1}{\cos^2 y} dy = x dx$	1
	$\int \sec^2 y dy = \int x dx$	1 mark for correct
		integral or equivalent
	$\tan y = \frac{1}{2} x^2 + c$	merit.
	$\tan 0 = \frac{1}{2} + c$	
	$c = -\frac{1}{2}$	
	$\therefore \qquad \tan y = \frac{1}{2} x^2 - \frac{1}{2}$	
	$y = \tan^{-1}\left(\frac{1}{2}x^2 - \frac{1}{2}\right)$	
13b	$A = \frac{1}{2}$ ab sin θ	2 marks for correct
	$A = 48\sin\theta$	working and
	$\frac{dA}{d\theta} = 48\cos\theta$	solution.
		1 mark for correct
	$\frac{dA}{dt} = \frac{dA}{d\theta} \times \frac{d\theta}{dt}$	derivative or equivalent
	$=48\cos\theta \times 0.2$	merit.
	when $\theta = \frac{\pi}{3}$	
	$\frac{dA}{dt} = 4.8$	
	Area changing at a rate of 4.8 $\text{cm}^2 s^{-1}$	
13c	group cosx and cos $3x$ cosx + cos $3x = 2\cos 2x \cos x$ (reference sheet)	3 marks for correct
	$\therefore 2\cos 2x \cos x + \cos 2x = 0$	working and solution.
	$\cos 2x(2\cos x + 1) = 0$	501011011.
	$\cos 2x = 0 \text{or} \cos x = -\frac{1}{2}$	2 marks, finds some
	$2x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ or $x = \frac{2\pi}{3}, \frac{4\pi}{3}$	correct solutions
	:. $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{2\pi}{3}, \frac{4\pi}{3}$	1 mark
	4,4,4,4,3,3	correctly expands the expression
		or

		equivalent
		progress.
13d i	$\delta = \frac{\sqrt{1\ 000\ \times\ 0.52\ \times\ 0.48}}{1\ 000}$	3 marks for
	8	correct
	= 0.0158	working and solution
		301011011
	$z = \frac{0.5 - 0.52}{0.0158}$	
		2 marks for
	= -1.27	correct
	P(z < -1.27) = 1 - 0.8980	standard deviation
	= 0.102	and z score
	= 10.2%	
	10.270	1 mark for
		correct
		standard deviation
13d ii		2 marks for
150 11	$\frac{\sqrt{npq}}{n} < 0.01$	correct
		working and
	p = 0.4 and $q = 0.6$	solution
	$\sqrt{0.24n} < 0.01n$	
	$0.24n < 0.0001n^2$	1 mark for
	$0.24n - 0.0001n^2 < 0$	correct inequality or
	$0.24 - 0.0001n < 0$ since $n \neq 0$	equivalent
	0.24 < 0.0001n	
	2 400 < n	
	n = 2.401	
13 e i	$20 \cos 30^\circ + 60 \sin 120^\circ = 10\sqrt{3} - 30$ newtons	1 mark
13 e ii	vertical direction	2 marks for
	20sin 30° + 60sin 120°	correct
	$= 10 + 30\sqrt{3}$	solution
	$\therefore (10\sqrt{3} - 30)\mathbf{i} + (10 + 30\sqrt{3})\mathbf{j}$	1 mark for
		vertical
		direction.

14 a)	$T = B + Ae^{kt}$	4 marks for
	$Ae^{kt} = T - B$	all correct
	$\frac{dT}{dt} = kAe^{kt}$	substitutions
		and final
	=k(T-B)	value with
	=k(T-180)	the correct
	$\therefore B = 180$	calculations.
	$T = Ae^{kt} + 180$	
	t=0,T=0	1 mark for
	$0 = Ae^0 + 180$	each of the
	$\therefore A = -180$	values A & B.
	$T = -180e^{kt} + 180$	
	t = 15, T = 25	1 mark for
	$25 = -180e^{15k} + 180$	value of k.
	$\frac{31}{2} - e^{15k}$	
	$\frac{31}{36} = e^{15k}$	1 mark for
	$\frac{\ln 31}{36} = 15k$	the correct
	36	final rate.
	$\frac{\ln 31}{26}$	IIIai rate.
	$\therefore k = \frac{36}{15}$	
	$T = -180e^{kt} + 180$ where $k \approx -0.009969$	
	$T = 100, \frac{dT}{dt} = -0.009969(100 - 180)$	
	$= 0.79750258^{\circ} \frac{c}{min}$	
Generally done well. Students should note that substitutions need to be shown and the exact		
value of k should be used in the final step.		
Transcription Errors (TE) were common in this question.		

14 b)	$\frac{6}{25}x^2 = x + 1$	3 marks for	
		correct	
	$6x^2 - 25x - 25 = 0$	boundaries,	
	(6x+5)(x-5) = 0	area	
	(6x + 5)(x - 5) = 0 $\therefore x = -\frac{5}{6}, x = 5$	between 0-5	
	0	and correct	
	from graph, shaded between $x = 0, x = 5$	exact value	
	$V = \pi \int_0^5 \left[(x+1)^2 - \left(\frac{6}{25}x^2\right)^2 \right] dx$	integration	
	$=\pi \left[\frac{(x+1)^3}{3} - \frac{\frac{36}{625}x^5}{5} \right]_{0}^{5}$	2 marks for	
	$=\pi \left[\frac{(x+1)^3}{625^x} - \frac{625^x}{625^x}\right]$	correct	
	3 5	integration	
	L - 10	with	
	$=\pi\left[(72-36)-\left(\frac{1}{3}-0\right)\right]$	incorrect	
		boundaries.	
	$=\frac{107\pi}{3}u^{3}$		
		1 mark for	
		boundaries.	
		1 mark for	
		area with	
		correct	
		boundaries.	
Most solu	tions had the points of intersection of graphs found correctly.		
Errors stemmed from using the points of intersection as boundaries of the integral, ie $-\frac{5}{6}to$ 5.			
Few solutions had calculated			
$V = \pi \int_{-0^{5}} \left[\left((x + 1 - 6/25 x^{2})^{2} dx \right) \right]$			
which was incorrect, and marks were not awarded.			
	Students should remember to leave it in exact form, with cubic units.		
Students			

14 c)


$$\int_{0}^{2} \frac{1}{\sqrt{7 + 12x - 4x^{2}}}$$

$$= \int_{0}^{2} \frac{2}{\sqrt{16 - (2x - 3)^{2}}}$$

$$= \frac{1}{2} [sin^{-1}(\frac{2x - 3}{4})]_{0}^{2}$$

$$= \frac{1}{2} \left(sin^{-1}\left(\frac{1}{4}\right) - sin^{-1}\left(-\frac{3}{4}\right)\right)$$
Most solutions had correct substitution as given in the question, however, some solutions lost the square root sign and simplified the question.
Some square root sign life duestion.
Some square root sign and simplified the question.
Some square root sign and simplified the question.
A few solutions correctly simplified the inverse sin of a negative value.

Students should remember to substitute the boundaries as some solutions had the second inverse sin expression as zero.

		1 1 0
14 e)	Require to prove:	1 mark for
	$\frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \dots + \frac{1}{(2n-1)2n} = \frac{1}{2n}$	proof for
	n(n+1) $(n+1)(n+2)$ $(n+2)(n+3)$ $(2n-1)2n$ $2n$	correct
		statements
	for all integers $n \ge 1$.	for $n =$
		k & n = k +
	Consider $n = 1$.	1
	Consider $n = 1$. $L.H.S = \frac{1}{1(2)} = \frac{1}{2}$ $R.H.S = \frac{1}{2 \times 1} = \frac{1}{2}$	
	$\begin{array}{ccc} 1(2) & 2 \\ 1 & 1 \end{array}$	1 mark for
	$R.H.S = \frac{1}{2} + \frac{1}{2}$	incorporating
	$\begin{array}{c} 2 \times 1 & 2 \\ L.H.S = R.H.S \end{array}$	n = k + 1
	\therefore true for $n = 1$	into proof,
		with all
	Assume statement true for $n = k$, for $k \in \mathbb{Z}^+$	fractions
	i.e.	
		correctly
	$\left \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} + \dots + \frac{1}{(2k-1)2k} = \frac{1}{2k}\right $	added &
		subtracted
	Prove true for $n = k + 1$	1 1 0
	i.e.	1 mark for
		completed
	$\left \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} + \dots + \frac{1}{(2k-1)(2k)} + \frac{1}{2k(2k+1)}\right $	correct
	$ \binom{(k+1)(k+2)}{(k+2)(k+3)} + \binom{(2k-1)(2k)}{(2k+1)(2k+2)} = \frac{1}{2(k+1)} $	proof.
	$+\frac{1}{(2k+1)(2k+2)}$	
	1	More marks
	$=\frac{1}{2(k+1)}$	were
		awarded for
	Now using assumption,	the
	$I H S = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	statements
	$L.H.S = \frac{1}{2k} - \frac{1}{k(k+1)} + \frac{1}{2k(2k+1)} + \frac{1}{(2k+1)(2k+2)}$	rather than
	$=\frac{(k+1)(2k+1) - 2(2k+1) + (k+1) + k}{2k(k+1)(2k+1)}$	n=1 proof,
	$-\frac{2k(k+1)(2k+1)}{2k(k+1)(2k+1)}$	hence the
	$=\frac{2k^2+k}{2k(k+1)(2k+1)} = \frac{k(2k+1)}{2k(k+1)(2k+1)} = \frac{1}{2(k+1)}$	mark was
	$=\frac{1}{2k(k+1)(2k+1)}=1$	redirected.
	\therefore true for $n = k + 1$	
	Hence, by mathematical induction, the statement is true for all positive integers	
	$n \ge 1$	
L	1	1]

Most solutions did not notice the subtraction of the term missing from S(k) nor the extra term that was added from S(k) to S(k + 1).

Some of those solution that included all four terms did not succeed with the addition/subtraction of 4 fractions. Those solution that simplified two fractions at a time had more success.

Solutions that did not show the correct simplification did not gain full marks.

Solutions that used sigma notation for the S(k) and S(k + 1) were not able to see the pattern fully and only gained one mark.

Students should note that not all induction questions have one term added.